
Building Keyword-Indexed Virtual Libraries  

in a Logic Programming Environment 
 

Edirlei Soares de Lima, Simone Diniz Junqueira Barbosa, Bruno Feijó, Antonio Luz Furtado 
Department of Informatics – Pontifical Catholic University of Rio de Janeiro (PUC-RIO)  

Rua Marquês de São Vicente, 225 – Rio de Janeiro – Brazil 

{elima, simone, bfeijo, furtado}@inf.puc-rio.br 
  

ABSTRACT 

KW-GPS is a system to assist users intent on enjoying Web 

resources related to a domain-restricted collection of stories. In 

this system, each story is referenced in a virtual library in terms of 

the following data: (1) the URLs of resources associated with the 

story, which include but are not limited to plot-summaries, 

narrative texts, and videos; and (2) keywords of different classes, 

which serve as a multi-aspect index mechanism. Library items 

also include story templates, representing narrative motifs. 

Furthermore, a reduced version of the tool runs the basic rank-

and-show process on mobile devices.   

Categories and Subject Descriptors 

H.3.5 [Information Systems]: Online Information Services – 

Web-based services.  

General Terms 

Documentation, Languages, Design, Experimentation. 

Keywords 

Virtual Libraries, Web Resources, Story Templates, Digital 

Entertainment, Detective Stories, Logic Programming. 

1. INTRODUCTION 
Most recommender systems are based on collaborative filtering 
algorithms and user models that predict the preferences of 
consumers from a large database of previous interactions with the 
system. For a user who is searching for specific aspects of a 
particular series of entertainment products, however, content-
based recommender systems may prove to be more adequate in 
providing such assistance. Nevertheless, it is quite difficult to find 
Web or mobile services that follow a knowledge-based strategy of 
recommendation, which is essential to the digital entertainment 
industry. On the one hand, consumers may need guidance related 
to the content’s structure of their favorite series. For instance, how 
to find a novel or a game in which a woman is the head of 
Scotland Yard? On the other hand, authors of digital 
entertainment may want to go beyond finding inspiration and start 
creating new stories from interesting combinations of existing 
ones that fit certain characteristics.  

In this paper we propose a simple but effective system, called 

KW-GPS, to assist users intent on enjoying Web resources 
related to a previously located domain-restricted collection of 
stories. Each story is referenced in a virtual library in terms of the 
following data: (1) the URLs of Web-residing resources 
associated with the story, which include, but are not limited to, 
plot-summaries, narrative texts, and videos (mostly trailers, due to 
copyright restrictions); and (2) keywords of different classes, 
which serve as a multi-aspect index mechanism. The system was 
initially applied to Agatha Christie's Poirot detective-stories [4] – 

hence its acronym, which stands for "KeyWord-based Guide to 

Poirot Stories", also reflecting the authors' effort towards a 

positioning system (i.e. a GPS device) to help users to navigate 
the Web. 

The keywords are optionally structured as logical terms, admitting 
variables as parameters. Moreover this keyword-based structure 
allows performing other more hardworking processes, involving 
complex selections and the use of templates to explore similarity. 

A logic-programming tool was developed to implement the 
system. The modular structure of the tool caters for the different 
roles of prospective users. Experts on logic programming may 
want to revise some of our design decisions and modify parts of 
the main program, thus playing, like we originally did, the role of 

designers. Experts on the domain on hand, not expected to be 
skilled programmers (though, even in their case, some knowledge 
of logic programming is desirable, to be able to formulate logic 

expressions), would act as providers, searching through the Web 
for stories and associated resources and choosing appropriate 
indexing keywords; theirs is the task of producing the domain-
specification program, optionally with the help of the authoring 
module and of a separate tool. Finally a simplified rank-and-show 
facility, that hides the logic formalisms, and an interface for 
mobile devices were designed for those whose sole interest is to 

watch the stories, i.e. the end users (henceforward simply users). 

The rest of the paper is organized as follows. Section 2 describes 

the KW-GPS system, through examples taken from the domain of 

Poirot stories (cf. the technical report1 for details). Section 3 

elaborates on criteria to formulate keyword repertoires. The 

mobile device interface is covered in section 4. Section 5 surveys 

related works. Concluding remarks are presented in section 6. 

2. THE KW-GPS TOOL 

2.1 The rank-and-show facility 
The system operates on virtual library data previously located on 
the Web, pertaining to a given domain such as a set of Poirot 
stories. Two main sets of clauses represent, respectively, (1) the 
numbered library entries, giving the title of each story and the 

                                                                 

1 ftp://ftp.inf.puc-rio.br/pub/docs/techreports/13_10_lima.pdf  

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are not 

made or distributed for profit or commercial advantage and that copies bear 

this notice and the full citation on the first page. Copyrights for components 

of this work owned by others than ACM must be honored. Abstracting with 

credit is permitted. To copy otherwise, or republish, to post on servers or to 

redistribute to lists, requires prior specific permission and/or a fee. Request 

permissions from permissions@acm.org. 

WebMedia'14, November 18 - 21 2014, João Pessoa, Brazil 

Copyright 2014 ACM 978-1-4503-3230-9/14/11…$15.00 

http://dx.doi.org/10.1145/2664551.2664553  

 

ftp://ftp.inf.puc-rio.br/pub/docs/techreports/13_10_lima.pdf
http://dx.doi.org/10.1145/2664551.2664553


URLs of the associated resources; and (2) the index entries, 
consisting of keyword lists of different classes for each story 
(numbered as in the library entries). Three clauses precede them, 
the first to name the keyword classes, and the others to act as 
conditioners to the ranking process, as will be explained later.   

Our choice of keyword classes was influenced by a seminal study 
by Todorov [31], wherein the highly-reputed literary theorist 
remarked that in a detective-story there actually coexist two 
narratives: that of the crime, and that of the investigation. One 
more class was added, due to Poirot's observation (in Evil Under 
the Sun) that: "Murder springs, nine times out of ten, out of the 
character and circumstances of the murdered person. Because the 
victim was the kind of person he or she was, therefore was he or 
she murdered!". We did not include a class about the criminal, 
because we felt we should leave out whatever might function as a 
"spoiler", ruining the author's effort to keep the suspense until the 
end. A small example follows (with the URLs in hyperlink format, 
for the reader's convenience): 

/* domain My Poirot 1 */ 

 
kw_classes([victim, crime, investigation]). 

thresholds(St, [V, C, I], T). 

keyword_lists(St, [V, C, I]). 

 
% LIBRARY 

 
lib(1, 'Evil Under the Sun', 

    [plot_summary: 'http://goo.gl/CMQtK', 

     wiki: 'http://goo.gl/3AQvk', 

     video: 'http://goo.gl/7RKxV1']). 

 
lib(2, 'Cards on the Table', 

   [plot_summary: 'http://goo.gl/mVmUO', 

    wiki: 'http://goo.gl/JXQGy', 

    video: 'http://goo.gl/QmykOh']). 

    

lib(3, 'The Mysterious Affair at Styles', 

   [plot_summary: 'http://goo.gl/40MRg', 

    wiki: 'http://goo.gl/OEWHL', 

    full_text: 'http://goo.gl/3qp1R ']). 
         

lib(4, 'The Chocolate Box',  

   [plot_summary: 'http://goo.gl/kDnVF', 

    wiki: 'http://goo.gl/piaspM', 

    video: 'http://goo.gl/BxRzPv']). 

   
% KEYWORDS 

 

kws(1, victim, [gender: female, marital_status: married, 

                occupation: actress,  

                character: credulous,  

                swindled_by: 'younger man',  

                age_bracket: 30, economic_status: rich]). 

kws(1, crime, [action: murder, means: strangulation,  

        place: beach, motive: 'financial gain',  

           circumstance: 'holiday season',  

          companion: (lover,'younger man')]). 

 

kws(1, investigation, [clue: 'character of the victim',  

                      snag: 'time of death',  

                      tactic: 'break self-control']). 

         

kws(2, victim, [gender: male, marital_status: single,  

                occupation: 'art collector',  

                character: bizarre, age_bracket: 40,  

                economic_status: rich]). 

kws(2, crime,  [action: murder, means: stabbing,  

                place: 'drawing room',  

                motive: 'avoid accusation', 

                circumstance: 'dinner party']). 

kws(2, investigation, [clue: 'bridge scores',  

         tactic: 'deceiving trick']). 

 

kws(3, victim, [gender: female, marital_status: married, 

         age_bracket: 70, character: credulous,  

         economic_status: 'large fortune',  

         attitude: autocratic,          

         swindled_by: 'younger man',  

         occupation: 'social work']). 

kws(3, crime, [action: murder, means: poisoning,  

         place: bedroom, motive: 'financial gain',  

         circumstance: 'medical treatment', 

         companion: (someone,'younger man')]). 

kws(3, investigation, [clue: 'incriminating letter', 

         tactic: 'expose evidence',  

         snag: 'time of death']). 

         

kws(4, victim, [gender: male, age_bracket: 30,  

         character: evil,  

         occupation: politician,  

         economic_status: middle]). 

kws(4, crime, [action: execution, means: poisoning,  

            motive: 'moral reasons', place: study, 

             circumstance: conversation]). 

kws(4, investigation, [clue: chocolates,  

               snag: 'mistaken suspect',  

         tactic: confession]). 

 

The ranking process is started by entering the rank(S) 

command, whose single parameter must be a variable to be 
instantiated at the end with a list of story numbers in decreasing 
order of total number of hits. The user is asked, for each keyword 
class, to choose from the respective set of keywords, which are 
taken from all the stories in the library and displayed on the 
screen. For the class victim, for example, these are: 

1:age_bracket:30 

2:age_bracket:40 

3:age_bracket:70 

4:character:autocratic 

5:character:bizarre 

6:character:credulous 

7:character:evil 

8:economic_status:large fortune 

9:economic_status:middle 

10:economic_status:rich 

11:gender:female 

12:gender:male 

13:marital_status:married 

14:marital_status:single 

15:occupation:actress 

16:occupation:art collector 

17:occupation:politician 

18:occupation:social work 

19:swindled_by:younger man 

choose for victim: 

 

To choose, the user types the corresponding numbers, e.g. 7, 12 

(for character:evil and gender:male), and presses the 

enter key. If the class is not at that moment an aspect of interest, 
the user simply presses the key without supplying any numbers. 
Hits are added-up for stories that possess the chosen keywords, 
but stories with no hits are not excluded. However the user has the 
option to prefix a number with either a '+' or a '-' sign, to indicate, 
respectively, that only stories with that keyword or only stories 
without it are acceptable. At the end, the output parameter 
variable is instantiated as mentioned before and, in addition, the 
result of the ranking process is shown in sentential form. With the 
choices 7, 12 for victim, 4, -11, 14 for crime, and 1, 3, 

8 for investigation, one would have: 

The Chocolate Box with 5 hits 

Cards on the Table with 3 hits 

The Mysterious Affair at Styles with 0 hits 

 

S = [4, 2, 3] 

 

Notice that -11, referring to means:strangulation, caused 

the exclusion of Evil Under the Sun. Also notice that a story with 
0 hits was kept, which is, in general, useless. To remedy this 
inconvenience, the thresholds clause, shown before in a, so to 

speak, "neutral" format, can be rewritten so as to impose 
conditions, both on the total of hits and on the number of hits per 
class. The purpose of the other conditioning clause, 
keyword_lists, is to act as a filter, typically considering the 

permissible user's choices in a general context. For example, it can 
specify that if the user explicitly rejects stories with 
means:stabbing, then the even more gruesome stories with 

means:strangulation will also be excluded. 

To activate the resources provided for their best-ranked stories, 
users have a show command, whose parameters designate the 

http://goo.gl/CMQtK
http://goo.gl/3AQvk
http://goo.gl/7RKxV1
http://goo.gl/mVmUO
http://goo.gl/JXQGy
http://goo.gl/QmykOh
http://goo.gl/40MRg
http://goo.gl/OEWHL
http://goo.gl/3qp1R
http://goo.gl/kDnVF
http://goo.gl/piaspM
http://goo.gl/BxRzPv


resource and the story-number. The line below will explore 
whatever is available for The Chocolate Box, a story in which 
Poirot, in his own opinion, acted with less than his usual genius: 

 

:- has_resources(St, 'The Chocolate Box', R),  

   forall(member(Ri, R), show(Ri, St)). 

 

2.2 Other basic facilities 
The similar command uses the keywords of a story to rank the 

others, consequently giving a measure of how close they are to it. 
Applying this command to Evil Under the Sun we learn that it has 
something in common with all the other stories, most notably with 
The Mysterious Affair at Styles: 

 

?- similar(1,S). 

 

The Mysterious Affair at Styles with 7 hits 

Cards on the Table with 2 hits 

The Chocolate Box with 1 hits 

 

S = [3, 2, 4]. 

 

Users with a knowledge of the domain's specification have 
available a flexible select command to rank the stories on the 

basis of explicitly indicated keywords, covering one or more 
classes. For instance, the same result of the example of the 
preceding section would be obtained by entering the line:  

 

?- select([[character:evil, gender:male], 

       [circumstance:'dinner party',  

       -means:strangulation,  

       motive:'moral reasons'],  

       [clue:'bridge scores', 

       clue:chocolates,tactic:confession]], S). 

 

Of course typing errors should be expected, which led us to 
introduce a checking device that performs a preliminary 
comparison of the indicated keywords against those figuring in 
the kws clauses. Automatic substitution will occur if one is found 

within a Levenshtein distance [25] less or equal to 2 from the 
misspelled keyword. In all such cases a message is displayed, such 
as: 

 

cicunstance:dinner party not found for class {crime} - 

similar: circumstance:dinner party 

 

Automatic substitution will also happen in order to accommodate 
a number of related terms not included in the kws clauses, which, 

nevertheless, would spontaneously occur to persons familiar with 
the domain. Indeed we realized that cluttering the kws clauses 

with hypernyms, hyponyms, and other related terms would affect 
the intended user-friendliness of the rank command in a negative 

way, since most people would not like to choose from excessively 
long lists. A compromise solution was adopted, consisting of the 
addition to the domain specification of specific (as well as 
somewhat more general) related_kw clauses such as: 

 

rel_kw(means:poisoning, means:arsenic). 

rel_kw(K, K_rel) :- is_a(K_rel, K). 

 

assuming that, to enable the second clause, appropriate is_a 

clauses are also provided. If the system can neither handle the 
user's indicated term as a misspelled or as a related reference to a 
registered keyword, the intractable term is not used in the 
selection and a warning message is issued. 

Yet the most significant feature of the select command is its 
ability to deal with variables, optionally referred to in logical 
expressions following the '/' separator. The example below 

searches for stories with victims of both genders younger than 50, 

noting that whenever variables are involved, the selection list is 
displayed to reveal how they were instantiated upon the execution 
of the command – thereby performing a complementary query-
answering task: 

 

?- select([[age_bracket:A, gender:G], [], []]/(A < 50), 

S). 

 

1 - [[age_bracket:30, gender:female], [], []] 

2 - [[age_bracket:40, gender:male], [], []] 

4 - [[age_bracket:30, gender:male], [], []] 

 

The Chocolate Box with 2 hits 

Cards on the Table with 2 hits 

Evil Under the Sun with 2 hits 

 

S = [4, 2, 1]. 

 

In view of a thesis cogently exposed in [18] about categorization, 
we may consider that the two commands in this section, select 

and similar, complement each other in a nice way, given that 

human beings tend to classify things by just wondering to what 
other (prototypical) thing they resemble, rarely trying to verify 
systematically whether they have the properties postulated in 
scholarly taxonomies. Thus people would promptly categorize an 
animal as a bird if it looks like a robin, a bird par excellence after 
that author. Applying the notion to stories, instead of asking: 
"give me a story with such and such characteristics" (or "such 
keywords"), they would say: "give me a story like that one". 

2.3 Templates and narrative motifs 
The indicated similarity between Evil Under the Sun and The 
Mysterious Affair at Styles can be attributed to the presence of a 
common narrative motif, which we call the Swindler motif. 

The motif occurs in other Poirot stories, e.g. Death in the Nile. 

Keyword classes composed of lists of property:value pairs, such 
as we have been using in the examples, can be treated as frames, a 

data structure fully compatible with the Entity-Relationship 

model and with RDF formalisms [8], which lends itself well to a 
method for handling narrative motifs. The method utilizes two 
operations on frames: unification and its dual, most specific 

generalization (msg for short) [17]. With msg, it is possible to 
combine two or more stories so as to create story templates to 
represent a common motif. Then, by unifying a template with 
frames with property:value pairs both common and not common 
with those in the template, one can instantiate and at the same 
time extend the narrative expressed by the motif. It is a known 
fact that evoking one or more motifs helps to compose new 
stories. 

Besides the Swindler motif, a second motif, taking us to the 

far-removed domain of Elizabethan drama, will be included here, 
because Poirot himself explicitly brought it in to find the culprit in 
his last case (reported in the Curtain story). Several apparently 
unrelated crimes had been committed by different individuals, but 
all cases had one thing in common: the presence of a person, 
whom Poirot simply named "X", who had contact with each of the 
accused. The little Belgian solved the mystery and identified "X" 
through an analogy with Shakespeare's Othello. Accordingly, we 
expanded our library with story templates for both motifs: 

 

lib_t(1,'Swindler motif',[]). 

 

kws_t(1,victim, [gender: female, character: credulous,  

              economic_status: rich, swindled_by: X]). 

kws_t(1,crime, [action: murder, motive: 'financial gain', 

          companion: (Y,X)]). 

kws_t(1,investigation, [snag: 'time of death',  

                        swindled_by: X,companion: (Y,X),  

          culprit: X, accomplice: Y]). 

 



lib_t(2,'Inducer motif',[]). 

 

kws_t(2,victim, [kills: (B, A), victim_name:A]). 

kws_t(2,crime, [kills: (B, A), loves: (B, A),  

         tells: (C, B, infidel(A))]). 

kws_t(2,investigation, [tells: (C, B, infidel(A)),  

                        culprit: C]). 

 

To be able to confirm that the templates match the two stories, we 
first rewrite the kws clauses of Evil Under the Sun and of The 

Mysterious Affair at Styles, giving the names of the participating 
characters, and adding culprit and accomplice terms with 

variable parameters to the investigation kws clauses: 

 
kws(1, victim, [gender: female, marital_status: married, 

         occupation: actress,  

         character:credulous,  

         swindled_by: 'Redfern', age_bracket: 30,  

         economic_status: rich]). 

kws(1, crime, [action: murder, means: strangulation,  

        place: beach, motive: 'financial gain',  

            circumstance: 'holiday season',  

          companion: ('Christine', 'Redfern')]). 

kws(1, investigation, [clue: 'character of the victim',   

        snag: 'time of death',  

        tactic: 'break self-control',  

           culprit: X, accomplice: Y]). 

 

kws(3, victim, [gender: female, marital_status: married, 

         age_bracket: 70, character: credulous,  

         economic_status: 'large fortune',  

         attitude: autocratic,   

         swindled_by: 'Inglethorp',  

         occupation: 'social work']). 

kws(3, crime, [action: murder, means: poisoning,  

        place: bedroom, motive: 'financial gain',  

        circumstance: 'medical treatment',  

        companion: (someone,'Inglethorp')]). 

 

kws(3, investigation, [clue: 'chemical property',  

                tactic: 'expose evidence',  

                snag: 'time of death',  

                culprit: X, accomplice: Y]). 

 

We are now in a position to introduce a command that uses frame-
unification to find which stories incorporate a given motif. Its 
input parameter is the story template representing the motif, and 
the output parameter is the list of stories detected. Informally, 
what the command does is the inverse of the template-generating 
process: instead of generalizing and introducing variables when 
needed, it specializes by instantiating the variables with constants 
according to a pattern-matching discipline.  So the execution of 

:- similar_t(1,S). 

 

denounces the criminals of the two stories (except that Poirot does 
not immediately disclose who is the "someone" – a certain Miss 
Howard – in the second story responsible for the snag involving 

the time of death, which served as an alibi to Mr. Inglethorp): 

Evil Under the Sun - [[gender:female, 

    marital_status:married, 

                 occupation:actress, 

   character:credulous, 

                 swindled_by:Redfern,  

   age_bracket:30, economic_status:rich],  

   [action:murder, means:strangulation,  

    place:beach, motive:financial gain,  

    circumstance:holiday season,  

    companion: (Christine, Redfern)],  

   [clue:character of the victim,  

    snag:time of death,  

    tactic:break self-control,  

    culprit:Redfern, accomplice:Christine]] 

 

The Mysterious Affair at Styles - [[gender:female,  

    marital_status:married, age_bracket:70,  

    character:credulous, 

    economic_status:large fortune,  

                  attitude:autocratic,  

    swindled_by:Inglethorp,   

                occupation:social work],  

   [action:murder, means:poisoning,  

    place:bedroom, motive:financial gain,  

    circumstance:medical treatment,  

    companion: (someone, Inglethorp)],  

   [clue:chemical property, 

                  tactic:expose evidence, 

    snag:time of death,  

    culprit:Inglethorp, 

                  accomplice:someone]] 

 

S = [1, 3]. 
 

Proceeding along the same line with the stories incorporating the 
Inducer motif, one obtains: 

?- similar_t(2,S). 

 

Curtain - [[victim_name:wife], [tells: (Norton, Riggs, 

     infidel(wife)), loves: (Riggs, wife),  

     kills: (Riggs, wife)],  

           [culprit:Norton, executes: (Poirot, Norton)]] 

 

Othello - [[victim_name:Desdemona], [loves: (Othello,  

            Desdemona), tells: (Iago, Othello,  

            infidel(Desdemona)), kills: (Othello, 

            Desdemona),suicides:Othello],  

           [culprit:Iago]] 

 

S = [5, 6]. 

 

As anticipated, templates, as representation of literary motifs, also 
serve a more ambitious goal: helping to compose new stories. For 
this purpose, the select_t command is used, having as input 

parameter, like the select command of the previous section, 

explicit keyword lists covering all classes (though for some of 
them empty lists can be supplied). The command uses these terms 
to instantiate the kws_t clauses of the templates, its output 

parameter indicating which templates were successfully matched. 
Since the command employs frame-unification to achieve 
instantiation, properties not shared by the two operands, i.e. that 
do not figure either in the input or in the template, are kept. Thus 
the story that begins to emerge prolongs, so to speak, the narrative 
even beyond the motif expressed by the template. 

The example introduces two characters unknown in the Poirot 
world, a man called Archie and his companion Miss Neele; it also 
adds the novel circumstance that the victim of the supposedly 
criminal action has disappeared (in itself a motif – see e.g. The 
Disappearance of Mr. Davenheim). The man's female companion 
performs another evil act: she accuses his wife, called Teresa, of 
infidelity, thereby reinforcing his murderous impulse. As a result, 
both templates are separately instantiated, and by virtue of the 
first template, a culprit and an accomplice are revealed: 

?- select_t([[swindled_by:'Archie'],  

     [companion:('Miss Neele','Archie'),  

      tells:('Miss Neele','Archie', 

      infidel('Teresa')),  

      circumstance:'victim disappears'],[]],S). 

 

Swindler motif - [[swindled_by:Archie, gender:female, 

      character:credulous, economic_status:rich],  

       [companion: (Miss Neele, Archie),  

      tells: (Miss Neele, Archie,infidel(Teresa)),  

      circumstance:victim disappears,  

          action:murder,motive:financial gain],  

       [snag:time of death,  

      swindled_by:Archie, companion: (Miss Neele,  

      Archie), culprit:Archie,  

      accomplice:Miss Neele]] 

 

Inducer motif - [[swindled_by:Archie, victim_name:Teresa,  

      loves: (Archie, Teresa)],  

     [companion: (Miss Neele, Archie),  

      tells: (Miss Neele, Archie,infidel(Teresa)),  

      circumstance:victim disappears,  

      loves: (Archie,Teresa),  

      kills: (Archie, Teresa)],  

     [tells: (Miss Neele, Archie,infidel(Teresa)),  

      culprit:Miss Neele]] 

 

S = [1, 2]. 

 

Could a story combining the two motifs be composed? The 
trouble is that putting the two lines together would be rejected by 



the frame-unification discipline: a conflict arises regarding the 
identity of the main culprit. Solving conflicts, in order to be able 
to combine narrative lines, is a task that often requires much 
creativity; under the name of blending, it is extensively discussed 
in [6]. The predicate below (for details, cf. technical report cited 
before) illustrates one way to face the problem: to simply ask the 
user to make a choice wherever a property:value conflict arises:  

?- select_blend([[swindled_by:'Archie'],  

   [companion:('Miss Neele','Archie'),  

    tells:('Miss Neele','Archie',infidel('Teresa')),   

      circumstance:'victim disappears'],[]],S). 

 

conflict with culprit: 

1. Archie 

2. Miss Neele 

Your choice: 2 

 

victim: 

[swindled_by:Archie, gender:female, character:credulous, 

 economic_status:rich, victim_name:Teresa,  

 loves: (Archie, Teresa)] 

 

crime: 

[companion: (Miss Neele, Archie), tells: (Miss Neele, 

 Archie, infidel(Teresa)),  

 circumstance:victim disappears,  

 action:murder, motive:financial gain,  

 loves: (Archie, Teresa), kills: (Archie, Teresa)] 

 

investigation: 

[snag:time of death, swindled_by:Archie,  

 companion: (Miss Neele, Archie), accomplice:Miss Neele,  

 tells: (Miss Neele, Archie, infidel(Teresa)),  

 culprit:Miss Neele] 

 

Archie murders his wife for monetary gain, while still in love and 
feeling jealous for her. Mixed feelings are not uncommon, 
unwarranted as they may seem, but if Miss Neele is deemed the 
main culprit, would it make sense to also call her an accomplice? 
Nonetheless the example illustrates the notion that new stories can 
arise by combining two or more motifs, and extending the 
combination with further events. And, although this little story 
was surely never composed by Agatha Christie, we suspect that 
some such plot might well have crossed her imagination. (Why? – 
we leave that to the reader, as a Web-searching exercise). 

2.4 A simple rank-and-show user interface 
A reduced version of the KW-GPS tool, containing only the 
rank and the show facilities, is activated by double-clicking an 

icon, which may conveniently be placed on the monitor's screen. 
The user does not have to enter any command line, every move 
being menu-directed. The keyword lists are successively presented 
for each class, and the user chooses them as in section 2.1. 

After the stories are ranked in decreasing order of total hits, the 
user is invited to indicate what resource should be activated. 
Suppose the Cards on the Table is chosen, and the user asks for 
its plot-summary. While the plot-summary remains open, other 
resources can be requested and can be visualized side-by-side if 
non-overlapping windows are adequately disposed (Figure 1). 

When end is chosen to the activation of resources, the list of 

stories is displayed again. Suppose The Chocolate Box is then 

chosen and, from its resources, the Wikipedia entry is called for. 

Next, if the user twice replies end (to the choice of resources and 

to the choice of stories), these two recursive loops terminate, and 

the system backtracks to the outermost loop, asking whether the 

user wants to perform another selection, thereby starting again the 

whole process. If the answer is negative, a halt command is 

executed and the Prolog window vanishes from the screen.  

Thanks to this strictly menu-driven usage mode, the programming 

language formalisms stay hidden, so that the Prolog machinery 

becomes practically transparent to users. 

 

Figure 1. The simple rank-and-show user interface. 

2.5 Installing a new domain 
To create or redesign a domain, providers have an authoring 
module that requires only a minimum of familiarity with the 
notational details of Prolog. The first step is to write a text file 
specifying how the domain will be called, the names of the classes 
of keywords, and information about the stories that will constitute 
the library. The information entries for each story, numbered 
consecutively, indicate the title of the story and of the URLs of 
the included resources. The kws clauses are inserted by the 

module, which extracts them from Wikipedia or IMDB plot 
summaries, asking the user to indicate whether each keyword 
should be retained or rejected, and in the positive case in which 
class it should be placed. The user can test the adequacy of a 

keyword by asking for its tf-idf (term-frequency–inverse 
document-frequency) evaluation [32]. For the meaning of 
unknown terms, WordNet or DBpedia pages can be opened on 
demand.  

In its present implementation, the module does not provide a 
general mechanism to locate the resources and retrieve their 
URLs. However we have separately developed another system, 

called LOG-SNIP (for details, cf. the technical report2), which 
captures the snippets of the resources found in the course of a 
Google search. To guide the search, a list containing keywords 
and directives of various kinds is specified, so as to define the 
domain of current interest.  The captured snippets are kept in a 
Prolog file as frame-structured clauses, decomposed into four 
fields: name, date, url, info. A fifth kws field is added by 
extracting resource-specific keywords from the name and info 
fields. A facility is provided to transform the snippets clauses into 

the clausal notation required by KW-GPS: the lib clauses are 

created from the first four fields and the kws clauses from the 

fifth field (which keeps the extracted keywords). As keyword 

extractor our implementation now uses the AlchemyAPI service.3  

The choice of truly representative keywords is critical. Although 
plot summaries should in principle be richer sources than 
snippets, they are contributed by different people, with unequal 
competence, who may often be misled by personal idiosyncrasies. 

3. CONSIDERATIONS ON KEYWORD 

CHOICE 
Keyword repertoires, either featuring ordinary words and phrases 

or more complex structures such as property:value pairs, can 
either be formed from what is found in the resources themselves 

                                                                 

2 ftp://ftp.inf.puc-rio.br/pub/docs/techreports/14_01_lima.pdf  

3 http://www.alchemyapi.com/api/keyword-extraction/ 

ftp://ftp.inf.puc-rio.br/pub/docs/techreports/14_01_lima.pdf
http://www.alchemyapi.com/api/keyword-extraction/


(taken from snippets or from plot summaries, as indicated in the 
previous section) or be borrowed from an external source, such as: 

a) terminology of the genre  

b) traits of the audience  

Option (a) is particularly attractive, since with a limited number of 
terms the stories can be meaningfully characterized, and neatly 
compared with each other. For folktales, one may take the 31 
functions described in [27] or (some subset of) the many types 
and motifs of the index compilation in [1]; for drama in general, 
36 situations have been identified in [26]. Story segments 
(scenes), named after a dramatic situation and with keyword 
classes indicating preconditions and postconditions, can be 
chained together to form branching plot sequences, furnishing to 
authors a suitable storyboard scheme. Even to characterize the 
"story" of sportive games there exist official lists of events, 

sometimes called scouts. The Fédération Internationale de 

Volleyball (FIVB)4 shows in its site the statistics of each game, 
which can easily be represented in property:value format, where 
the properties are scouts including attack, block, serve, 

and the values (for each player and the totals for the two 
contending teams) are the number of points gained through each 
of these so-called skills. 

For our Poirot examples we utilized, as seen, a number of 
properties, such as motive, clue, etc., commonly associated 

with the genre of detective stories. Surely several other properties 
in the same line could be added, taken both from studies on 
fictional works (e.g. the various phases of the crime and the 
investigation narratives, following Todorov's scheme [2]) and on 
criminal law (e.g. mitigating and aggravating 

circumstances [12]). When adding legal terms, however, one 

may find advisable to keep compatibility with the author's 
language, which is not always rigorously correct in this regard – 
for instance, in Taken at the Flood, Agatha Christie allows Poirot 
to discount as a mere accident what would still draw a verdict of 
involuntary manslaughter.  

In line with option (b), the stereotype-based recommendation 
strategy reported in [28] offers a fascinating possibility, trying to 
guess, from the personalities of the users, which stories each user 
would be expected to like. A promising way to implement this 
notion is to provide for each story property:value keywords 

evaluating the story according to the traits of the Big Five [9] 
proposal, possibly with percentile intervals as values. Each 
prospective user might then go through one of the short tests 
available in the Web,5 thus obtaining grades to be matched against 
the intervals estimated (roughly, to begin with, and later refined 
through usage [28]) for the stories in the virtual library. Another 
intriguing possibility is to revert the direction: consultants with a 
psychology background may, by inspecting a usage log, be able to 

evaluate each user's Big Five percentiles from the stories the user 
has accessed in an extended period of time. 

4. THE RANK-AND- SHOW FACILITY IN 

MOBILE DEVICES 
In order to run the rank-and-show process in mobile devices 

(tablets and cell-phones) we developed an Android application 

that provides a graphical user interface to the KW-GPS system 

(Figure 2). The mobile application is based on a client-server 

                                                                 

4 http://www.fivb.org/ 

5 http://www.ocf.berkeley.edu/~johnlab/bfi.php 

architecture, where the server hosts the KW-GPS system and 

provides access to its functions, and the client contains the mobile 

user interface that allows users to search and enjoy web resources 

provided by the system (as in the photo of Figure 3). 

(a) keyword classes

(b) keyword selection

(c) search results

(d) result item

 

Figure 2. Graphical user interface of the mobile application. 

In the mobile interface, keywords are organized and displayed in 
classes (victim, crime and investigation) (Figure 2a). 

Each class contains three types of keywords: optional (green 
button), required (blue button), and excluded (red button). When 
a keyword class and type are designated by the user, the respective 
list of keywords is displayed for selection (Figure 2b). After the 
intended keywords are selected, the server performs the rank-and-
show process, and the results are shown in the mobile interface 
(Figure 2c). Looking at the resulting sequence, the user is then 
free to indicate one of the stories, not necessarily the best ranked, 
causing the corresponding web resources to be displayed (Figure 
2d). The interface is automatically adjusted to the domain 

specified in the KW-GPS system. All the required information 

about keywords is retrieved from the server that hosts the KW-

GPS system. In this way, keyword classes and lists are 
automatically created and labelled according to the specifics of 
the current domain. The communication between the mobile 

application and the KW-GPS server is performed through a 
TCP/IP connection. 

In order to assess the mobile interface, we have conducted a user 
evaluation with 9 participants, 8 male and 1 female, aged 16 to 
17. Seven of them had some knowledge of detective stories, and 
three knew about the detective stories of Poirot. All of the 

participants were frequent users of Google Web Search.  

We asked the participants to utilize both our mobile application 

(S) and Google Web Search through the default Android web 
browser (G) to find a Poirot detective story to their taste. Our aim 
was therefore to compare our proposal with the most commonly 
used method of web search in mobile devices. In order to reduce 
learning effects, half of the participants used S first, and the other 
half used G first. On average, each session of S lasted 4.05 

minutes (=0.86), and each session of G lasted 9.22 minutes 

(=1.48). 

http://www.fivb.org/
http://www.ocf.berkeley.edu/~johnlab/bfi.php


 

Figure 3. Using the mobile interface. 

After using each version, the participants filled in a questionnaire 

with 26 questions derived from the USE Questionnaire [23], 
concerning the system usefulness, user satisfaction and how easy 
was the use of the system. Each reply was graded within a 7-point 

Likert scale ranging from “strongly disagree” (-3) through 
“neutral” (0) to “strongly agree” (+3). After interacting with both 
systems, the participants were interviewed about their experience.  

Figure 4 summarizes the results. Both Google Web Search and 

our mobile KW-GPS system obtained similar grades for system 
usefulness. On the other hand, our system clearly improved user 
satisfaction and ease of use; in the course of the interviews, the 
participants declared that it was easy to use, gave more accurate 
results, and allowed to find interesting stories without risking to 
enter into unknown web pages. In contrast, some participants said 

that Google Web Search gave them more freedom. 

-1,00

0,00

1,00

2,00

3,00

4,00

System Usefulness User Satisfaction Ease of Use

Mobile KW-GPS (S) Google Web Search (G)

 

Figure 4. Average number of points (within a 7-point Likert scale) of 

the system usefulness, user satisfaction, and ease of use, with error 

bars indicating standard deviation around the mean. 

During the user experiment, we also collected some statistical data 
about the time users spent to complete the task, number of 
searches, and number of clicks on wrong results. As clearly shown 

in Figure 5, the mobile KW-GPS system cut in more than a half 
the time needed to complete the task, and reduced substantially 
the number of searches and clicks on wrong results. 

Although the user study reported here cannot be judged 
entirely conclusive, due to the small number of participants, 
the positive user feedback is a welcome stimulus for the 
continuation of our development efforts. 

0,00

2,00

4,00

6,00

8,00

10,00

12,00

Time (min) Searches Wrong Results

Mobile KW-GPS (S) Google Web Search (G)

 

Figure 5. Statistical data collected during the user evaluation about 

the time users spent to complete the task, number of searches, and 

number of wrong results. 

5. RELATED WORK 
Keyword-based search is a well-studied problem in the area of 
information retrieval. Certain approaches [10][19] explore the use 
of keyword-based search for XML data; formulating queries with 
keywords, they retrieve document fragments and use a ranking 
mechanism to increase search result quality. Some works [5][3] 
investigate keyword-based search for the Semantic Web and RDF 
data, in order to provide ranked retrieval using content-based 
relevance estimation. Others propose to extend keyword-based 
search with structured query capabilities [16][24] and logic 
applied in the context of ambient media [21][22]. 

In the field of entertainment computing, a sports video search and 
retrieval system, called DAVVI [29][14], offers the capability of 
delivering sports video content for mobile and desktop devices. 
The system is based on automatic summarization and 
recommendation techniques, wherein sports videos are semi-
automatically annotated with metadata extracted from live text 
commentary web pages. Users can search and query for game 
events using keywords and phrases found in the live text 
commentaries. A similar system is described in [11]. 

There are several mobile applications that provide access to movie 
databases, such as the “IMDb Movies & TV”6 [13], which is a 

mobile application developed for Android, iOS, and Windows 

Phone that provides direct access to the IMDB movie information 
database, allowing users to search and navigate through a huge 
collection of movies and TV series. Another application is 

“Movies by Flixster” [7] for Android, iOS and Windows Phone, 
which permits to browse and search for movies, read reviews and 
watch trailers in mobile devices. Several studies suggest the 
importance of domain-specific search applications for mobiles 
devices. Both [15] and [30] emphasize that task-specific search 
applications are better to design in ways that more adequately 
serve the users' needs. In [20] it is argued that, with such 
applications, users are able to retrieve documents with fewer 
interactions and less data traffic.  

6. CONCLUDING REMARKS 
Originally employed to organize private virtual libraries of Poirot 
detective-stories, providing a multiple aspect keyword-based 

index mechanism, the development of the KW-GPS system led us 
to a closer study of keywords as story descriptors. With promising 
results, we experimented with the property:value frame format, 

                                                                 

6 http://www.youtube.com/watch?v=IVMylQEJUGs 

http://www.youtube.com/watch?v=IVMylQEJUGs


the inclusion of variable parameters to establish links between 
keywords, and the use of templates to represent story motifs 

Regarding the modular architecture of the implementation, it must 
be stressed that it serves two different purposes. Firstly, the simple 
rank-and-show process, running both on fixed and mobile 

devices, was designed having in mind what we thought end users 
might find easy to handle – and eventually would like to share 
with other people. Secondly, the other basic commands, 
similar and select, as well as their extensions running on 

templates, seemed adequate to be incorporated in larger 

applications, to be built by designers with programming 

expertise, with the help of providers with sound domain 
knowledge. 

The choice of logic programming for the implementation proved 
to be a major asset. Among its unique features are the rule-driven 
paradigm and the outstanding pattern-matching capability built 

into the interpreter. Future research will explore other domains, 

related or not with storytelling, and will submit the KW-GPS 
system to more extensive user-evaluation experiments. 

7. REFERENCES 
[1] Aarne, A., and Thompson, S. 1987. The Types of the Folktale. 

Suomalainen Tiedeakatemia. 

[2] Bordwell, D. 1985. Narration in the Fiction Film. University of 

Wisconsin Press, Madison, WI. 

[3] Cheng, G., Ge, W., and Qu, T. 2008. Falcons: searching and 

browsing entities on the semantic web. Proc. of  17th International 

Conference on World Wide Web, ACM Press, 1101-1102. 

[4] Christie, A. 2008. Hercule Poirot - the Complete Short Stories. 

Harper, London. 

[5] Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., and Kolari, P. 2005. 

Finding and ranking knowledge on the semantic web. Proc. of  4th 

International Semantic Web Conference, 156-170. 

[6] Fauconnier G., and Turner, M. 2002. The Way We Think: 

Conceptual Blending and the Mind's Hidden Complexities. Basic 

Books, NY. 

[7] Flixster Mobile, 2014. Available at: http://community.flixster.com/m 

obile/apps [Accessed: Jun. 2014].  

[8] Furtado, A.L., Casanova, M.A., Breitman, K.K., and Barbosa, S.D.J. 

2009. A Frame Manipulation Algebra for ER Logical Stage 

Modeling. Proc. 28th International Conference on Conceptual 

Modeling, Springer, 9-24. 

[9] Gosling, S.D., Rentfrow, P.J., and Swann, W.B. 2003. A very brief 

measure of the Big-Five personality domain. Journal of Research in 

Personality, vol. 37, 505-528. 

[10] Guo, L., Shao F., Botev, C., and Shanmugasundaram, J. 2003. 

XRANK: ranked keyword search over XML documents. Proc. of  

ACM SIGMOD International Conference on Management of Data, 

ACM Press, 16-27.  

[11] Halvorsen, P., Johansen, D., Olstad, B., Kupka, T., Tennøe, S. 2010. 

vESP: A Video-Enabled Enterprise Search Platform. Proc. of 4th 

International Conference on Network and System Security, 

Melbourne, 534-541. 

[12] Hessick, C.B. 2006. Motive Role in Criminal Punishment. Southern 

California Law Review, vol. 80, 2006. 

[13] IMDB, 2014. Movie Apps for iPhone, Android, iPad, WP7 & iPod. 

Available at: http://www.imdb.com/apps/ [Accessed: Jun. 2014]. 

[14] Johansen, D., Johansen, H., Aarflot, T., Hurley, J. Kvalnes, A. 

Gurrin, C., Sav, S., Olstad, B., Aaberg, E., Endestad, T., Riiser, H., 

Griwodz, C., and Halvorsen, P. 2009. DAVVI: A Prototype for the 

Next Generation Multimedia Entertainment Platform. Proc. of 17th 

ACM international conference on Multimedia, ACM Press, 989-

990. 

[15] Kamvar, M., Kellar, M., Patel, R., and Xu, Y. 2009. Computers and 

iphones and mobile phones, oh my!: a logs-based comparison of 

search users on different devices. Proc. of 18th international 

conference on World Wide Web, ACM Press, 801-810. 

[16] Kasneci, G.,  Suchanek, F.M., Ifrim, G. Elbassuoni, S., Ramanath, 

M., and  Weikum, G., 2008. NAGA: harvesting, searching and 

ranking knowledge. Proc. of  ACM SIGMOD International 

Conference on Management of Data, Vancouver, 1285-1288. 

[17] Knight, K. 1989. Unification: A Multidisciplinary Survey. ACM 

Computing Surveys, vol. 21 (1), 93-124. 

[18] Lakoff, G. and Johnson, M. 1980. Metaphors We Live By. 

University of Chicago Press, Chicago. 

[19] Liu , Z., Walker, J., and Chen, Y. 2007. XSeek: a semantic XML 

search engine using keywords. Proc. of the 33rd International 

Conference on Very Large Data Bases, 1330-1333.  

[20] Luca, E.W.D., and Nürnberger, A. 2005. Supporting information 

retrieval on mobile devices. Proc. of 7th international conference on 

Human computer interaction with mobile devices & services, ACM 

Press, 347-348. 

[21] Lugmayr, A., Zou, Y., Stockleben, B. Lindfors, K. and Melakoski, 

C., 2013. Categorization of ambient media projects on their business 

models, innovativeness, and characteristics - evaluation of Nokia 

Ubimedia MindTrek Award Projects of 2010. Multimedia Tools and 

Applications, vol. 66 (1), 33-57. 

[22] Lugmayr. A., 2012. Connecting the real world with the digital 

overlay with smart ambient media - applying Peirce’s categories in 

the context of ambient media. Multimedia Tools and Applications, 

vol. 58 (2), 385-398. 

[23] Lund, A. 2001. Measuring Usability with the USE Questionnaire. 

STC Usability SIG Newsletter. Available at: http://www.stcsig.org/u 

sability/newsletter/0110_measuring_with_use.html [Accessed: Jun. 

2014]. 

[24] Mandreoli, F., Martoglia, R., Villani, G. and Penzo, W. 2009. 

Flexible query answering on graph-modeled data. Proc. 12th 

International Conference on Extending Database Technology: 

Advances in Database Technology, ACM Press, 216-227. 

[25] Navarro, G. 2001. A Guided Tour to Approximate String Matching. 

ACM Computing Surveys, vol. 33 (1), 31-88. 

[26] Polti, G. 1924. The Thirty-Six Dramatic Situations. L. Ray (trans.). 

James Knapp Reeve. 

[27] Propp, V. 1968. Morphology of the Folktale. S. Laurence (trans.). 

University of Texas Press, TX. 

[28] Rich, E. 1979. User modeling via stereotypes. Cognitive Science, 

vol. 3 (4), 329-354. 

[29] Scott , D., Gurrin, C., Johansen, D., and Johansen, G. 2010. 

Searching and Recommending Sports Content on Mobile Devices. 

Proc. of 16th International Multimedia Modeling Conference, 

Chongqing, 779-781. 

[30] Sohn, T., Li, K.A., Griswold, W.G., and Hollan, J.D. 2008. A diary 

study of mobile information needs. Proc.  of  26th annual SIGCHI 

conference on Human factors in computing systems, ACM Press, 

433-442. 

[31] Todorov, T. 1977. The Poetics of Prose. Cornell University Press, 

Cornell, NY. 

[32] Wu, H.C., Luk, R.W.P., Wong, K.F., and Kwok, K.L. 2008. 

Interpreting TF-IDF Term Weights as Making Relevance Decisions. 

ACM Transactions on Information Systems, vol. 26 (3), No 3. 

http://community.flixster.com/m%20obile/apps
http://community.flixster.com/m%20obile/apps
http://www.imdb.com/apps/
http://www.stcsig.org/u%20sability/newsletter/0110_measuring_with_use.html
http://www.stcsig.org/u%20sability/newsletter/0110_measuring_with_use.html

